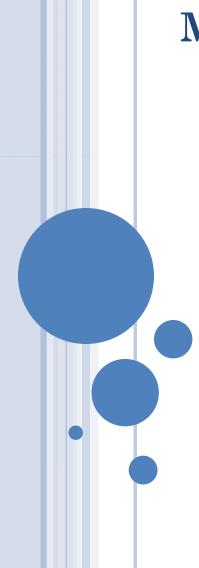
PRODUCTION AND OPERATIONS MANAGEMENT

UNIT - II Waiting-Line Analysis



APPROACHES FOR EVALUATING CAPACITY ALTERNATIVES

- 1. Cost-Volume Analysis
 - Break-even point
- 2. Financial Analysis
 - Cash flow
 - Present value
 - Pay-back Period method
 - ✤ NPV method
 - ✤ IRR method
- 3. Decision Theory
- 4. Waiting-Line Analysis

WAITING-LINE ANALYSIS

- Useful for designing or modifying service systems
- Waiting-lines occur across a wide variety of service systems
- Waiting-lines are caused by bottlenecks in the process
- Helps managers to plan capacity by *balancing the cost of having customers wait in line with the cost of additional capacity*

WHEN DOES WAITING LINE OCCUR?

• Demand for service exceeds the capacity to serve

• Varying arrival times of customer

• Varying service time at server

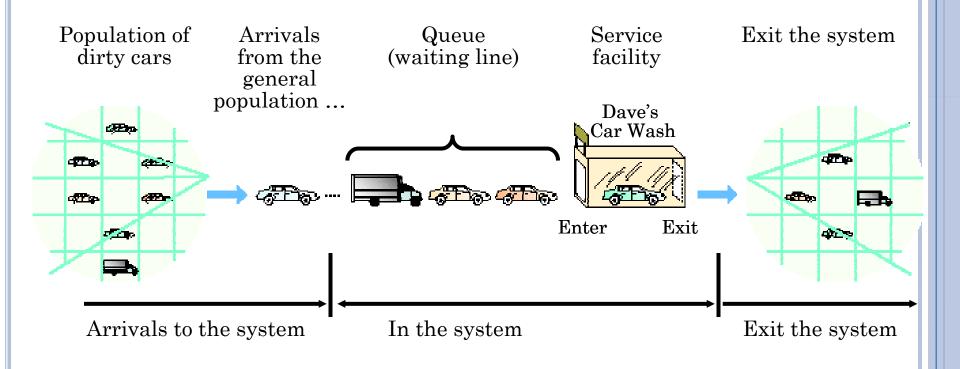
ELEMENTS OF WAITING LINE

• The Customer Population

• Arrival and Service Patterns

• The Service System

PARTS OF A WAITING LINE



WAITING-LINE CHARACTERISTICS

- Limited or unlimited queue length
- Queue discipline first-in, first-out (FIFO) is most common
- Other priority rules may be used in special circumstances

WAITING LINE PERFORMANCE MEASURES

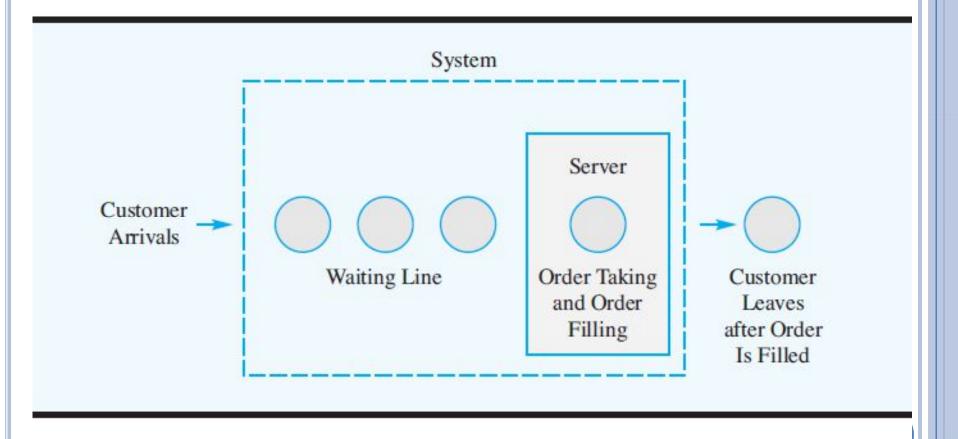
• The average number of customers waiting in line and in

the system

• The average time customers spend waiting, and the

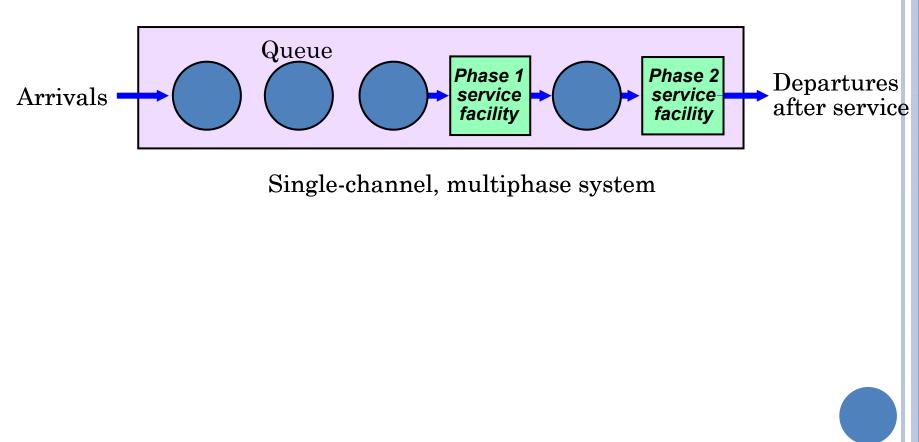
average time a customer spends in the system.

SINGLE - SERVER MODEL



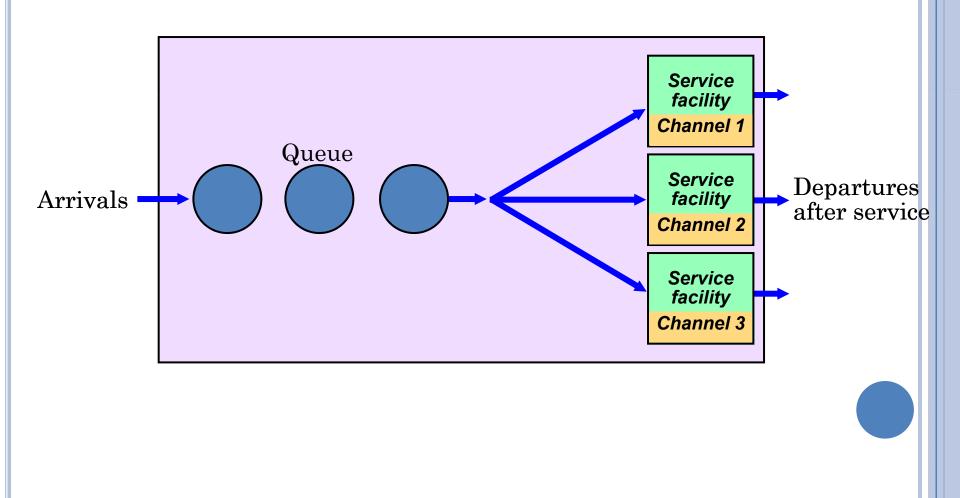
SINGLE CHANNEL, MULTI PHASE SYSTEM

A McDonald's dual window drive-through



Multi Channel, Single phase System

Most bank and post office service windows



SINGLE - SERVER MODEL

- Arrival Rate $= \lambda$
- Service Rate $= \mu$
- Average Utilization = $p = \lambda / \mu$

$$N_{\rm s} = \frac{1}{\mu - \lambda}$$

SINGLE - SERVER MODEL

• Average number of units waiting in the queue

$$(L_q) = \frac{\lambda^2}{\mu(\mu - \lambda)}$$

• Average time a unit spends waiting in the queue $(W_q) = \frac{\lambda}{\mu(\mu - \lambda)}$

EXAMPLE

- $\lambda = 2$ cars arriving/hour
- μ = 3 cars serviced/hour

$$L_{s} = \frac{\lambda}{\mu - \lambda} = \frac{2}{3 \cdot 2} = 2 \text{ cars in the system on average}$$
$$W_{s} = \frac{1}{\mu - \lambda} = \frac{1}{3 \cdot 2} = 1 \text{ hour average waiting time in the system}$$
$$L_{q} = \frac{\lambda^{2}}{\mu(\mu - \lambda)} = \frac{2^{2}}{3(3 \cdot 2)} = 1.33 \text{ cars waiting in line}$$

EXAMPLE CONT...

$$W_q = \frac{\lambda}{\mu(\mu - \lambda)} = \frac{2}{3(3-2)} = 2/3$$
 hour
 $= 0.66$ hr $= 0.667 \ge 60 = 40$ minute average waiting time

p= λ/μ = 2/3 = 66.6% of time mechanic is busy

EXAMPLE CONT		
Prob	ability of	f more than k cars in the system
k	$P_{n > k} =$	$(2/3)^{k+1}$
0	.667 ←	Note that this is equal to 1 - $P_0 = 133$
1	.444	
2	.296	
3	.198 ←	Implies that there is a 19.8% chance that more than 3 cars are in the system
4	.132	
5	.088	
6	.058	
7	.039	

EXAMPLE

Customer dissatisfaction and lost goodwill=Rs.10/hour

W_q = 2/3 hour Total arrivals= 16 per day Mechanic's salary= Rs. 56 per day

Total hours customers spend = $2 \times (16) = 10 + 2 \times 10^{-2}$ hours waiting per day

Customer waiting-time cost = $10 \times \left(10 \frac{2}{3}\right)$ = Rs. 106.67 Total expected costs = Rs.106.67 + Rs. 56 = Rs.162.67